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Abstract-The problem of steady natural convection in an inclined porous cavity with a discrete heat 
Source on a wall is studied numerically. Non-Darcy and thermal dispersion effects are taken into con- 
sideration in the momentum and energy equations, respectively. Wall effects on porosity, permeability and 
thermal dispersion are also taken into account. The governing equations in terms of vorticity, stream 
function and temperature are solved numerically by a finite difference method. It is found that a secondary 
vortex begins to appear in the cavity at a location above the discrete heat source if the media Rayleigh 
number is sufficiently high ; the intensity of the vortex increases with the eccentricity of the heat source and 
the inclination angle of the cavity. For a porous cavity at zero inclination angle with a vertical wall at a 
uniform temperature, the predicted average Nusselt numbers based on the present model are found to be 
in better agreement with experimental data ; the similarity solution (based on the boundary approximation, 
Darcy law with no thermal dispersion in an infinite constant porosity medium) is found to be accurate for 

the media Rayleigh number greater than 30. 

1. lNTRODUCTlON 

A GREAT deal of attention has been given to the study 
of natural convection in enclosures filled with a fluid- 
saturated porous medium during the past decades. 
Numerous theoretical studies have been performed 
for natural convection in enclosed rectangular porous 
cavities with two opposing walls being kept at different 
temperatures and the other walls being insulated [l, 
21. Most ofthe early studies were based on Darcy’s law 
with the assumption of a constant porosity medium. 
Results of these investigations show that the Nusselt 
number depends on the Rayleigh number and the 
aspect ratio. However, experimental results [3,4] show 
that the Nusselt number depends not only on the 
parameters mentioned above, but also on the Prandtl 
number, the Darcy number and the thermal con- 
ductivity ratio of the fluid to solid phases. The dis- 
crepancy between theory and experiments has 
prompted researchers to use new models for the 
prediction of Auid flow and heat transfer charac- 
teristics in porous media. For example, Prasad and 
Tuntomo [5] used the Darcy-Forchheimer equation 

to study the inertia effect on natural convection in a 
vertical porous cavity. Tong and Subramanian [6] 
used the Darcy-Brinkman model to study the bound- 
ary effect on natural convection in porous enclosures. 
Davis et al. [7] used the Darcy-Brinkman-Forch- 
heimer model to study the same problem with variable 
porosity effects taken into consideration. Hsiao et al. 

PI used the macroscopic momentum equation 
obtained by Hsu and Cheng [9] to study natural eon- 
vection about a horizontal cylinder in a porous enclos- 
ure with effects of non-uniform porosity and per- 
meability, no-slip boundary conditions, micro- and 
macro-inertia and thermal dispersion taken into con- 
sideration. 

Recently, the problem of natural convection in a 
porous cavity with discrete heat sources has attracted 
considerable attention. For example, El-Knatib and 
Prasad [lo] and, Robillard et al. [l I] studied the prob- 
lems of steady natural convection in porous cavities 
with a localized heat source from below. The for- 
mulation of the problem was based on the Darcy law 
and a constant porosity medium. In this paper, we 
shall study the effects of non-Darcy, variable porosity 
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NOMENCLATURE 

A aspect ratio of the cavity, &IL, *In local media Nusselt number 
a, b Ergun constants N% mean media Nusselt number 
B constant defined in equation (11) Pr, Prandtl number of the fluid phase 
C thermal dispersivity p*, p dimensional and dimensionless 

C* specific heat at constant pressure pressures 
Da Darcy number, K/H$ Ra Rayleigh number of fluid, 
Da, bulk Darcy number gPr(TZ - T:)H:Inr~, 
E distance between the centerline of the Ra, media Rayleigh number 

heated plate and the centerline of r”, T dimensional and dimensionless 
the wall temperatures 

e eccentricity of the heat source, u*, U dimensional and dimensionless 
El(HZl2) Darcian velocities in the x*-direction 

F Forchheimer coefficient v*, v dimensional and dimensionless 
J quantity defined in equation (25) Darcian velocities in the ye-direction 
9 gravitational acceleration 9, x dimensional and dimensionless 
Hi distance between the top of the heated horizontal coordinates 

plate and the top of the wall Y dimensionless y coordinate based on 
HZ length of the plate height of the cavity 
H3 distance between the bottom of the y*, y dimensional and dimensionless 

plate and the bottom of the wall vertical coordinates. 
h heat transfer coefficient 
K permeability Greek symbols 
KXJ bulk permeability a, effective thermal diffusivity, k,/p,C,, 
kc stagnant thermal conductivity af thermal diffusivity of fluid, kdp,C,, 
k cm bulk stagnant thermal conductivity Pf thermal expansion coefficient of fluid 
kd dispersive thermal conductivity I- dimensionless particle diameter, d,/H, 
ke effective thermal conductivity of the 8 inclination angle of the cavity 

porous medium il thermal conductivity ratio of fluid and 
k, thermal conductivity of the fluid phase solid phases 
k, thermal conductivity of the solid phase Pf dynamic viscosity of fluid 
L1 width of the cavity Vf kinematic viscosity of fluid 
L, height of the cavity Pf density of fluid 
m number of iteration 4 porosity 
Nu local Nusselt number based on the Y! dimensionless stream function 

thermal conductivity of the fluid 0 dimensionless vorticity 
NU mean Nusselt number based on the V2 Laplace operator in the (x, v) 

thermal conductivity of the fluid coordinates. 

and thermal dispersion on natural convection in an 
inclined porous cavity with a discrete heat source on 
one wall. The mathematical formulation of the prob- 
lem follows the previous work by Hsiao et al. [8]. A 
numerical solution was obtained based on the finite 
difference method. It is found that a secondary vortex 
begins to appear downstream of the discrete heat 
source when convection begins to predominate. The 
intensity of this vortex increases with the eccentricity 
of the heat source and the inclined angle of the cavity. 

2. MATHEMATICAL FORMULATION 

Consider an inclined two-dimensional rectangular 
porous cavity with height L, and width L,, as shown 
in Fig. 1, where the x and y coordinates are fixed with 
the cavity. A heated plate with length E-r, kept at a 
temperature c is mounted on one wall, while the rest 

of the walls are kept at room temperature, Tz. The 
bottom of the cavity is tilted at an angle 6’ with respect 
to the horizon. The distance between the top of the 
cavity and the heated plate is HI, while thap between 
the bottom of the cavity and the heated plate is H3_ 
The distance between the centerline of the heated plate 
and the centerline of the wall is E, such that when 
E = 0 the heated plate is centrally located on the side 
wall. The eccentricity of the plate is defined as 
e = E/(H,/2). Thus, e is positive if the centerline of 
the heated plate is below the centerline of the wall, 
while e is negative if the centerline of the heated plate 
is above the centerline of the wall. 

We now introduce the following dimensionless vari- 
ables : 
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FIG. 1. Physical model and coordinate system. 

T= 
Z-----T,* P*H2 
T,*-T,“’ p = pF”; ’ (1) 

where x and y are the dimensionless horizontal and 
vertical coordinates ; u* and u are the dimensional and 
dimensionless Darcian velocities in the x-direction, 
while o* and u are the dimensional and dimensionless 
Darcian velocities in the y-direction ; p* and p are the 
dimensional and dimensionless pressures; T* and T 
are the dimensional and dimensionless temperatures ; 
pf and af are the density and thermal diffusivity of the 
fluid phase. The continuity equation in terms of these 
dimensionless variables is 

The macroscopic dimensionless momentum equations 
for a variable porosity medium derived by Hsu and 
Cheng [9] are 

(3) 

q!w+RaPr,c#~Tcos~, (4) 

where 4 is the porosity which is assumed to vary 
exponentially with distance from the walls, i.e. 

4 = 4co+(40-4co)exp(--N,xlr) (5) 
with I- = d,/ff, being the dimensionless particle diam- 
eter, N, being an empirical constant, while 4. and 4m 
are the porosity on the wall and far away from the 

wall. In equations (3) and (4), P is the inertia 
coefficient, which is given by 

where a and b are Ergun’s constants. The parameters 
Pr, and Ra in equations (3) and (4) are the Prandtl 
number and the Rayleigh number of the fluid, which 
are defined as Pr, = vf/q and Ra = g&CT,* - T,Y)Nz/ 
afvf, where g is the gravitational acceleration, pf 
and vf are the thermal expansion coefficient and the 
kinematic viscosity of the fluid. The parameter Da in 
equations (3) and (4) is the local Darcy number, 
defined as Da = K/H$, where K is the local per- 
meability of the medium, which is given by 

K= 4?& 
au - 4)’ 

(7) 

for a packed-sphere bed. The local Darcy number is 
related to the bulk Darcy number (Dam) by 

where 

Da, = Km/G = r’~~ 

a(1 - 4co)2 ’ 
with K, denoting the bulk permeability. 

The dimensionless energy equation is 

In the above equation, CI, is the effective thermal diffu- 
sivity of the saturated porous medium, which is given 
by CI, = k,/(pc,), where k, is the effective thermal con- 
ductivity of the porous medium, which is the sum of 
the stagnant thermal conductivity of porous medium 
k, and the dispersive conductivity kdr i.e. 

k, = k,+k*. (10) 

The stagnant thermal conductivity of the medium can 
be computed according to the following expression 
[12] : 

k 
?= U-J(l-4W I__RB k 

B+l B-l 
2 1 1-M ’ (11) 

where B = 1.25[1- 4/4]’ Of9 and ;1 = k,/k,, with kf and 
k, being the thermal conductivities of the fluid and the 
solid phases, rqspectively. The value of k, for glass 
beads can be calculated according to [8] 

k, = 1.00416+1.6736x 10~3T*-4.184x 10-6T*2, 

(12) 

where T* is the temperature in “C and k, is expressed 
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in W m-l OC-‘. The thermal dispersion conductivity 
for flow through a porous medium is given by 193 

1-4 kd = 0.02 ~ 
( > 0 

(PC&I w*ldp, (13) 

where 1 vGJ*~ = (u*~+z~*~)‘~~ and the constant 0.02 was 
obtained by matching theory with experiments [9]. 

We now introduce the dimensionless stream func- 
tion ‘I’ and dimensionless vorticity n as 

(15) 

Eliminating the pressure terms in equations (3) and 
(4) and expressing the resulting equations in terms of 
the dimensionless stream function ‘P and dimen- 
sionless vorticity Q yield 

v=y = -a (16) 

+ Ra Prf 
i 

g (4T> cosB-?(&T)sinQ . 
8Y 1 (17) 

The energy equation in terms of the dimensionless 
stream function Y is 

The dimensionless boundary conditions are 

ay 
p=y=o, T=l, a= -TX,, 
dX 

at x = 0, E-r, 
H<Y< 

H2 +H, 

2 H2 

ire 
-='I!=T=O, a=-'P,, 
dX 

(19) 

atx = 0, O<Y<2 
2 

i3Y 
~ = Y = T= 0, 
ax 

c? = --TX,, 

(20) 

atx = 0, 
ff+H, L2 

H, 
dYdN (21) 

2 

a? 
-=‘Z’= T=O, R= -y.=,, 
dX 

3. NUMERICAL PROCEDURES 

(22) 

(23) 

(24) 

The governing equations (16)-(18) subject to 
boundary conditions (19)-(24) with auxiliary equa- 
tions (5)-(S) and (lo)-( 13) were discretized by the 
finite difference method based on second-order diff- 
erencing, and the resulting finite difference equations 
were solved by the kccessful over-relaxation @OR) 
technique. The iterative process was terminated until 
the following convergence criterion was satisfied : 

f 
rnfl_ m 

I f fI ???+I < 1o-4 ) (25) 

wherefstands for V‘, Q and T, while m is the iteration 
number. 

After the convergence criterion had been satisfied, 
computations were carried out for the local and mean 
Nusselt numbers along the discrete heat source, which 
are defined as 

(264 

The values of NU and NU are related to the local media 
Nusselt number Nu, and the mean media Nusselt 
number Nu, by 

NZl=+VZf,, 
Kf 

Nu = +if&. (27b) 
f 

(27a) 

Similarly, the Rayleigh number Ra is related to the 
media Rayleigh number Ra, by 

Ra = Ra, Da (c&,/a,), (28) 

where 

Ra, = gBr(Th* - T,*)%la,,vf. 
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Table 1. Comparisons of Nusselt numbers between the present and Robillard et aE.‘s 
numerical results [l I] for a discrete heat source on the bottom surface of a porous 

cavity 

Present Robillard 
Condition NJ-& e R&I A results et al. [l I] 

0.28 0.36 50 1 1.79 1.77 
Localized 0.28 0.36 100 1 2.92 2.89 

heating 0.28 0.36 150 1 3.68 3.64 
from 0.28 0.36 200 1 4.31 4.22 
below 0.5 0 100 1 2.55 2.50 

0.5 0 150 1 3.72 3.68 
(e = 90”) 0.5 0 200 1 4.60 4.52 

4. RESULTS AND DISCUSSION I Comparison with experimental results 

The parameters shown in the governing equations 
and boundary conditions are the particle diameter, 
Rayleigh number, Prandtl number, Darcy number, 
the eccentricity of the heat source, aspect ratio of the 
cavity, the thermal conductivity ratio of fluid to solid 
phases, porosity and inclination angle of the cavity. 
Numerical solutions were first carried out for a square 
cavity having HI = 7.5” (19.05 cm), H, = 18” (45.72 
cm), Hx = 3.5” (8.89 cm), L, = 29” (73.64 cm), i.e. 
e = 0.138, which correspond to the experimental 
apparatus used by Cheng et al. [13]. To study the 
effect of eccentricity of the heat source, other values 
of e (while keeping the same values of Hz and L,) were 
also computed. Other constants used in the numerical 
calculations were tic0 = 0.36, & = 0.9, NI = 7, 
a = 215 and b = 1.92, and Pr, = 4.3 and J. = 0.6 for 
a water/glass spheres system and Pr,- = 160 and 
;1 = 0.14 for a silicone oil/glass spheres system. Since 
four differential theoretical models are considered, the 
following symbols are used : CPND denotes constant 
porosity without dispersion, CPWD denotes constant 
porosity with dispersion, VPND denotes variable 
porosity without dispersion and VPWD denotes vari- 
able porosity with dispersion. In all of these models, 
no-slip boundary conditions were imposed. 

Accuracy of the numerical solution 
As mentioned earlier, Robillard et al. [l l] have 

carried out a numerical solution based on the Darcy 
law without dispersion for natural convection in a 
constant porosity cavity with a discrete heat source 
on the bottom surface. To assess the accuracy of the 
numerical algorithm used in this paper, computations 
were also carried out under the same conditions. It 
was found that a uniform grid of 8 1 x 8 1 was sufficient 
for Pr, < 5 and moderate media Rayleigh numbers 
(RG. < 150). However, for higher values of the media 
Rayleigh number and Prandtl number, a uniform grid 
of 101 x 101 is needed for the same accuracy. Table 1 
is a comparison of Robillard et aZ.‘s numerical results 
and those based on the present numerical algorithm_ 
It is shown that results based on the present algorithm 
agree very well with those obtained by Robillard et al. 
[Ill. 

Inaba et al. [4] have performed an experiment on 
natural convection in an inclined porous cavity heated 
at constant temperatures at opposing walls and ther- 
mally insulated at other walls. Table 2 is a comparison 
of the average media Nusselt numbers obtained exper- 
imentally by Inaba et al. [4] and the present numerical 
solutions based on four theoretical models for natural 
convection in rectangular cavities filled with glass 
spheres saturated with water at zero inclination angle 
(@ = O”) with A = 5 and I- = 0.153. It is shown that 
the numerical results with variable porosity and ther- 
mal dispersion effects taken into consideration agree 
the best with experimental data. 

Onset qf,free convection 
Figure 2 shows the Sect of the fluid Rayleigh num- 

ber on iVu/Nu, (where Nu, is the Nusselt number for 
heat conduction) with I- = 0. I, e = 0.138 and /z = 0.6 
for a cavity at zero inclination angle (0 = 0) based on 
four different models. As indicated in the figure, the 
Nusselt number is the highest for the model with vari- 
able porosity and thermal dispersion (VPWD) taken 
into consideration, while the Nusselt number is 
smallest for the constant porosity model with no ther- 
mal dispersion (CPND) taken into consideration. 
Note that the curves begin to deviate from the hori- 
zontal line at unity between Ra = 5 x lo5 and 7 x 10’ 
(corresponding to Ra, = 2.6-3.7), depending on the 
particular model used. These are the critical Rayleigh 
numbers for the onset of free convection in a porous 
cavity at zero inclination angle. From this figure, it car! 
be concluded that the variable porosity and thermal 
dispersion effects enhance instability. 

Streamlines and isotherms 
Figure 3 shows the isotherms (left) and streamlines 

(right) in a constant porosity cavity with A = 1 at 
Ra, = 53 (corresponding to Ra = lo7 and r = O.l), 
L = 0.6, e = 0.$38, and 8 = 0, 45” and 90”. For the 
case of zero inclination angle and Ra,,, = 53, it is 
shown that a small secondary vortex begins to appear 
downstream of the heated plate in the upper corner 
of the porous cavity. The strength of the secondary 
vortex increases with inclination angle. To investigate 
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Table 2. Comparisons of Nusselt numbers between present and previously published experimental results 

Porous 
media 

Present results 
Inaba 

I- A Ram I3 et al. [4] VPWD VPND CPWD CPND 

Water/glass 0.153 5 121 0 3.64 3.124 3.014 2.441 2.287 
Water/glass 0.153 5 1260 0 9.71 9.132 8.724 7.643 7.321 

the reason for the appearance of the secondary vortex, 
computations were carried out with the same par- 
ameters as those in Fig. 3, except the discrete heat 
source was replaced by a wall at a uniform tempera- 
ture. The results for streamlines (not presented) show 
that there is no secondary vortex. It can be concluded, 
therefore, that the appearance of the secondary vortex 
is due to the existence of the discrete heat source. To 
examine the effect of eccentricity of the discrete heat 
source on the heat transfer and the flow pattern, 
numerical solutions were carried out for Ra, = 53 
(corresponding to Ra = 107 and I- = O.l), A = 0.6, 
and ff = 30” at e = 0, 0.138 and 0.379. The results of 
these computations are presented in Fig. 4. It is shown 
that the lower the location of the discrete heat source 
(i.e. larger value of e), the stronger the strength of the 
secondary vortex and hence the higher the heat flux. 

Temperature distribution 
The effect of eccentricity of the discrete heat source 

on temperature distribution along the vertical axis of 
a square cavity filled with glass spheres saturated with 
silicone oil (Pr, = 160) is presented in Fig. 5(a), while 
those saturated with water (Pri = 4.3) are presented 
in Fig. 5(b). The results are based on the CPWD 
model with the discrete heat source located on the 
bottom surface of the cavity. It is shown that the 
temperature inversion is more pronounced at a larger 
eccentricity, suggesting the convection effect is 
stronger when the discrete heat source is located closer 
to the bottom of the cavity. A comparison of Figs. 
5(a) and (b) indicates that temperature inversion in 
the silicone oil/glass spheres system (Prf = 160) is not 

1.: 

I.4 

1.3 

.E 

Nuc 1.2 

1.1 

if- 

-vPwD r-=0.1 
e=0.138 

---- YPNI) e=w 
-‘- CPWD A=1 

-_--- cpm 

1 

Ra (4 
FIG. 2. Normalized mean Nusselt number for a square cavity 
at zero inclination angle with r = 0.1, e = 0.138 and 1 = 0.6 

calculated from four different models. 

FIG. 3. Effects of inclination of the discrete heat source on 
isotherms (left, AT = 0.1) and streamlines (right, AY = 1) 

for Ra = 107, I- = 0.1 and 1 = 0.6. 

as severe as in the water/glass spheres system (Pr, = 
4.3) due to the higher viscosity of the silicone oil and 
therefore a smaller convection velocity. 

Heat transfer 
Figure 6 shows the effect of inclination angle on 

heat transfer in a constant porosity cavity with iso- 
thermal opposing walls at different temperatures and 
with other walls being thermally insulated at a high 
media Rayleigh number of 530 (corresponding to 
Ra = 10’ and r = 0.1) for which the free convection 
current is strong. It is shown that a maximum value 
of the Nusselt number exists at 13 = 30”, and that the 
Nusselt number at Q = 0” (i.e. vertical heated wall) is 
higher than that at 8 = 90” (i.e. horizontally heated 
wall). This behavior is in qualitative agreement with 
Inaba et aZ.‘s data. 

Figure 7 shows the effects of thermal dispersion and 
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(c) e = 0.379 

FIG. 4. Effects of eccentricity of the discrete heat source on 
isotherms (left, AT = 0.1) and streamlines (right, A’P = 1) 

for Ra = 107, II = 0.1, e = 0.138, i = 0.6 and 8 = 30”. 

inclination angle on the mean fluid Nusselt number 
for a water/glass spheres system with e = 0.138 at 
low to moderate media Rayleigh numbers from 5.3 
(corresponding to Ra = lo6 and I- = 0.1) to 53 (cor- 
responding to Ra = 10’ and IY = 0. l), assuming a con- 
stant porosity medium. It can be concluded that (1) 
thermal dispersion tends to increase the heat transfer 
rate, (2) the effect of thermal dispersion is more pro- 
nounced at a higher Rayleigh number, (3) the effect 
of thermal dispersion on heat transfer is not influenced 
by the inclination angle of the cavity for Ra, < 5.3, 
where conduction is predominant, and (4) at a mod- 
erate Rayleigh number (Ra, = 53, for example), the 
mean Nusselt number increases to a maximum and 
then decreases; the effect of thermal dispersion 
increases with the inclination angle of the cavity. 

Figure 8 shows the effects of dimensionless particle 
diameter and inclination angle on the mean Nusselt 
number based on the VPWD model for e = 0.138, 
;1 = 0.6 and Ra = 10’. It can be concluded from this 
graph that the heat transfer rate is not influenced by 
the dimensionless particle diameter and the inclination 
angle for I- < 0.01. This corresponds to Ra, = 0.53, 
which is below the critical media Rayleigh number for 
the onset of convection, i.e. heat is transferred by 
conduction. With further increase in the dimensionless 
particle diameter to 0.1 (corresponding to Ra, = 53)) 
the heat transfer rate first decreases with the incli- 

1 

.9 

.8 

.7 

.6 

T .5 
.4 
-3 
-2 
.l 

‘- Ra =lO’ 

silicone oil/glass beads 

Y 

__ e=O 
----- e=O .138 

water/glass beads 
t \ 

01 
1 

0 0.2 0.4 0.6 0.8 1 

Y 
FIG. 5. Effects of eccentricity of the heat source on the tem- 
perature distribution along the vertical axis of a square con- 
stant porosity cavity heated from below. (a) Silicone oil/glass 

(Pr, = 160). (b) Water/glass (Pu, = 4.3). 

nation angle from 0” to 45” and then increases with 
inclination angle from 45” to 90”, which means a mini- 
mum heat transfer rate occurs at the inclination angle 
about 4.5”. Comparing Figs. 6 and 7, it is noted that the 
behavior of the Nusselt number at moderate Rayleigh 
number (Ra, = 53) as a function of the inclination 
angle depends greatly on whether the porosity is 
assumed to be constant or variable. 

Figure 9 shows the effects of variable porosity and 
the eccentricity of the discrete heat source on the mean 
fluid Nusselt number for a water/glass spheres system 

9 
I 

7 - 
iG Ra = 10% 

r = 0.1 

6 - A=1 

5’ I 
0 t15 30 45 60 75 90 

e 
FIG. 6. Effects of inclination angle on the mean Nusselt 
number in a constant porosity cavity at a high media Ray- 

leigh number (Ru, = 530). 
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6 , 1 

I - Hith dispersion 
- - - - Hithout dieperaion 

7 

e= O- 

5: Yl .---- -----..----__---_____ 
Ra =lO’ 

4 - I I I I I 
0 15 30 45 60 75 80 

8 (degree) 

FIG. 7. Effects ofthermal dispersion and inclination angle on 
the mean Nusselt number in a uniform porosity cavity at low 
to moderate media Rayleigh numbers (Ra, = 5.3-53) and 

e = 0.138. 

OlE 
’ 0.1 1 IO 100 1000 

Ra, 

8 f 1 

Nu 7 - 

Water/glass 

5 I I I I I I 
0 15 30 45 60 75 80 

B (degree) 

FIG. ‘3, Effect of particle diameter and inclination angle on 
the mean Nusselt number in a variable porosity cavity at low 
media Rayleigh numbers (Ra, = 0.053353) with ;L = 0.6 and 

e = 0.138. 

15 I 
~ Non-Uniform porosity 

13 _ ---- Uniform porosity 

Water/glass 
n 

11 - . 

xi 
8- 

__--- - 

5 I I I I 1 I I 
0 15 30 45 60 75 90 

0 (degree) 

FIG. 9. Effects of eccentricity, inclination angle and non- 
uniform porosity on the mean Nusselt number at a moderate 

media Rayleigh number (Ra, = 53) with ;1 = 0.6. 

at various inclination angles at a moderate media Ray- 
leigh number of 53 (corresponding to Ra = lo7 and 
I? = 0.1) and ,I = 0.6. It can be seen that the effect of 
variable porosity tends to increase the heat transfer 
rate, and that the heat transfer rate increases with 

100 t 
‘- 

I 
t B - !?= / 

(b) Variable Porosity /’ 

10 = 

y 5 0.009 

=LI ..’ 
/’ ’ ~Nu=,=O_88BRa’~ 

.R 
1 

0.1 1 ’ ‘f”“‘t ’ “““t’ ’ “““” ’ “ll~ 
0.1 1 10 100 1000 

Ra, 

FIG. 10. Comparison of the similarity solution with present 
numerical solution on the mean media Nusselt number for 
natural convection about a vertical plate in a uniform 

porosity cavity (a) and a variable porosity cavity (b). 

larger eccentricity. The behavior of the mean Nusselt 
number as a function of inclination at a moderate 
media Rayleigh number depends on whether the 
medium is assumed to be of constant or variable 
porosity, the eccentricity of the heat source and the 
Prandtl number of the fluid. 

Comparison with the similarity solution 

Figure 10(a) is a log-log plot of the mean media 
Nusselt number versus media Rayleigh number for 
natural convection in a constant porous cav;ity at zero 
inclination angle. The straight dashed line is Cheng 
and Minkowycz’s similarity solution [14] for natural 
convection about a semi-infinite vertical heated plate 
embedded in a constant porosity medium of infinite 
extent, which is given by 

Nu, = O.X88I2&” . (29) 

The above equation is based on Darcy’s law with 
boundary layer approximation and without thermal 
dispersion in a constant porosity medium. The solid 
line with II = 0 is the numerical solution based on 
Darcy’s law without the boundary layer approxi- 
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mation and thermal dispersion in a constant porosity 
medium. Since the solid line approaches the straight 
line given by equation (29) asymptotically, it indicates 
that the boundary layer approximation is valid for 
Ra, > 30. The solid curve with l? = 0.009 represents 
results with the effects of shearing stress, the inertia 
and thermal dispersion taken into consideration. The 
fact that this solid curve is below the similarity solu- 
tion at high media Rayleigh numbers suggests that the 
Brinkman and the inertia effects predominate over 
the thermal dispersion effect at these media Rayleigh 
numbers in a constant porosity medium. The cor- 
responding results based on a variable porosity model, 
with thermal dispersion taken into consideration, are 
presented as a solid curve in P’ig. IO(b), which lies 
above the similarity solution for Ra, < 200. This sug- 
gests that the variable porosity and thermal dispersion 
effects are predominant at low media Rayleigh 
numbers. However_ the solid curve crosses over the 
-straight line a! R:r. x L?%!. indit:~tirt~~ ih:rf th{% \i~:,~~-in*~ 
stress and inertia effects are predominant over the ther- 
mal dispersion and variable porosity effects at high 
media Rayleigh numbers. The numerical results are in 
qualitative agreement with Cheng et al.‘s data [ 131. 

5. CONCLUDING REMARKS 

Various effects on steady natural convection in an 
inclined porous cavity with a discrete heat source on 
a wall have been investigated in this paper. The fol- 
lowing conclusions can be drawn. 

1. At a sufficiently high media Rayleigh number, a 
secondary vortex begins to appear downstream of the 
discrete heat source. The strength of this vortex 
increases with the inclination angle of the porous 
cavity. 

2. For a constant porosity medium, the effect of 
thermal dispersion is unimportant in comparison with 
the effects of inertia and shearing stress. 

3. If the vertical wall of a constant porosity cavity 
is maintained at a constant temperature, Cheng and 
Minkowycz’s similarity solution can be applied for 
the calculation of the heat transfer rate if the media 
Rayleigh number is higher than 30. 

4. The variable porosity effect is predominant over 
the inertia and the shearing stress effects at low media 
Rayleigh numbers. However, the inertia and shearing 
stress effects are predominant * over the variable 
porosity and thermal dispersion effects at high media 
Rayleigh numbers. 

5. The eccentricity of the discrete heat source has 
an important effect on the heat transfer rate. The 
closer the heat source to the bottom wall, the higher 
the heat transfer rate. 

6. The effect of inclination angle of the cavity on 
heat transfer depends on whether conduction or free 
convection predominates. At low media Rayleigh 
numbers, where conduction is predominant, the incli- 
nation angle has little effect on heat transfer. At inter- 
mediate Rayieigh numbers, the effect of inclination 
angle on the Nusselt number depends on the eccen- 
tricity of the heat source, the Prandtl number of the 
fluid and on whether the porosit>- ib ;~ssun~d 10 1~ 
constant or variable. At high media Rayleigh 
numbers, where free convection is predominant, the 
heat transfer rate increases to a maximum and then 
decreases as the inclination angle increases ; moreover, 
the heat transfer rate at zero inclination Anglo in hi~rh~~~ 
than at an i!?ciination angle 01‘ c)(l 
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